Content

1. **The Institute in Overview** ... 1
 1.1 What you should know about Lung Vascular Diseases: Facts, Diagnostics and Therapy 2
 1.2 Mission Statement/Aims of the Institute ... 3
 1.3 Personal and Human Resources Development 4
 1.3.1 Development of the LBI-LVR Staff .. 4
 1.3.2 Graduations of the LBI-LVR Staff in 2020 4
 1.3.3 MUG career steps ... 4
 1.3.4 Awards and prizes ... 5
 1.3.5 Conferences and Meetings of the LBI-LVR Staff 5
 1.3.6 Patents of the LBI-LVR ... 6
 1.4 Highlights 2020 ... 7
 1.4.1 Evaluation .. 7
 1.4.2 Awards ... 9
 1.4.3 Fellowships ... 9
 1.4.4 Grants .. 9
 1.4.5 Events .. 11
 1.5 Public Relations .. 13

2. **Research Program 2020** ... 16
 2.1 Pathomechanisms of Pulmonary Vascular Remodelling 16
 2.2 Translational Platform of the LBI-LVR .. 24
 2.3 Clinical Studies .. 27
 2.4 Publications of the LBI-LVR 2020 .. 30
 2.4.1 Top five publications 2020 (in alphabetical order) 30
 2.4.1 Scientific publications 2020 ... 31

3. **LBI Inside** ... 36
 3.1 Inside LBI-LVR: Claudia Jakob-Pelikan .. 36
 3.2 Inside LBI-LVR: Sarah Bundschuh .. 36
 3.3 Inside LBI-LVR: Brita Maurer .. 37

4. **Teaching and Training Activities of the Institute** 38
 4.1 Training in the LBI for Lung Vascular Research 38
 4.1.1 Training of the LBI-LVR Staff .. 38
 4.1.2 Invited Speakers 2020 ... 40
Contact

Zentrum für Medizinische Grundlagenforschung
Neue Stiftingtalstraße 6/VI
8010 Graz, Austria
Tel.: +43 (0)316-385-72057
E-Mail: office@lvr.lbg.ac.at
Website: www.lvr.lbg.ac.at

© Medical University of Graz
Director: Grazyna Kwapiszewska
Deputy Director: Horst Olschewski

Employee:

Key Researchers:
- Gabor KOVACS
- Grazyna KWAPISZEWSKA
- Leigh MARSH

Scientific Staff:
- Alexander AVIAN assoc. MUG
- Valentina BIASIN assoc. MUG
- Anna BIRNHUBER
- Savinien BONHEUR
- Ehsan BONYADIRAD assoc. MUG
- Natalie BORDAG
- Luka BRCIC, assoc. MUG
- Slaven CRNKOVIC, assoc. MUG
- Philipp DOUSCHAN assoc. MUG
- Bakybek EGEMNAZAROV
- Antonia EGER
- Vasile FORIS assoc. MUG
- Elisabeth FLIESER
- Elisabeth GSCHWANDTNER assoc. MUW
- Andelko HRZENIAK assoc. MUG
- Katharina JANDL assoc. MUG
- Ceren MUTGAN, assoc. MUG
- Chandran NAGARAJ
- Bence NAGY
- Andrea OLSCHEWSKI assoc. MUG
- Michael PIENN
- Piet-Lennart ROSENSTOCK
- Diana SCHNÖGL
- Davor SKOFIC-MAURER assoc. MUG
- Neha SHARMA assoc. MUG
- Helene THEKKEKARA PUTHENPARAMPI
- Diana ZABINI assoc. MUG
- Katharina ZEDER

Technical Staff:
- Elisabeth BLANZ
- Visnja BUBALO
- Bettina FLASCH
- Thomas FUCHS assoc. MUG
- Sabine HALSEGGER assoc. MUG
- Tatjana HIRSCHMUGL
- Daniela KLEINSCHEK
- Lisa OBERREITER (Maternity leave)
- Kerstin SCHWEIGHOFER
- Simone TISCHLER assoc. MUG
- Alexandra Nina TREITLER
- Francesco VALZANO
- Hans Peter ZIEGLER, assoc. MUG

Management:
- Sarah BUNDSCHUH
- Claudia JAKOB-PELIKAN
- Stefanie LIEBMINGER (Maternity leave)
- Brita MAURER
- Angelika SCHEIRING (Maternity leave)
- Susanne SCHENK (since March)
Partners

We thank our partners, the Ludwig Boltzmann Society, Bayer AG and the Medical University of Graz, as well as the Government of Austria for their continuous support.

Ludwig Boltzmann Gesellschaft

(Website: www.lbg.ac.at)

The Ludwig Boltzmann Gesellschaft (LBG) is a non-profit organization establishing non-university research institutes in Austria. It is named after the Austrian physicist, mathematician and philosopher Ludwig Boltzmann, whose broad scientific interests still remain the basis for the interdisciplinarity of the Ludwig Boltzmann Gesellschaft today. The LBG, which is financed from public and private resources, manages institutes and clusters and currently employs more than 550 people.

Medical University of Graz

(Website: www.medunigraz.at)

Research activities of the Medical University of Graz (MUG) cover a broad range of clinical as well as pre-clinical fields. The MUG applies a pro-active approach in research management to involve and integrate researchers in international research initiatives. The LBI for Lung Vascular Research fits excellently in this concept and will be an important core for promotion of lung vascular research, diagnostic and innovative therapy of lung vascular diseases at the MUG.

Bayer AG

(Website: www.bayer.de)

Cardiovascular diseases are in the main focus of Bayer AG (BAG). BAG is currently developing new therapeutic options for the treatment of cardiovascular and lung diseases. The novel treatment for pulmonary hypertension (PH), the soluble guanylate cyclase stimulator Riociguat has recently been launched worldwide for pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). BAG has a broad experience in pulmonary hypertension associated research and in the transfer of results from “bench to bedside”. The interest of BAG is to further understand the underlying pathophysiology of pulmonary vascular diseases.
Committees

Scientific Advisory Board (SAB) – chaired by Prof. Wolfgang Kübler

- Prof. Wolfgang Kübler – Charité - Universitätsmedizin Berlin, DE
 https://physiologie-ccm.charite.de/en/
- Prof. Steve Abman – University of Colorado, US
 http://www.cudrivers.com/Find_A_Doctor/Profile/5902
- Prof. Nick Morrell – University of Cambridge, UK
 http://www.med.cam.ac.uk/morrell/
- Prof. Jose Lopez-Barneo – University of Sevilla, ES
- Prof. Martin Kolb – McMaster University of Ontario, Canada
 https://fhs.mcmaster.ca/medicine/respirology/faculty_member_kolb.htm

Advisory Board of the Partners (Board) – chaired by Mag. Caroline Schober

- Mag. Caroline Schober, Medical University of Graz
 http://www.medunigraz.at/rektorat/vizerektorin-fuer-forschung-und-internationales/
- Dr. Heidrun Dorsch, Bayer AG
 http://pharma.bayer.com/
- Dr. Peter Mayrhofer, Ludwig Boltzmann Gesellschaft
 http://www.lbg.ac.at/bereichsleitung
1 The Institute in Overview

The Ludwig Boltzmann Institute for Lung Vascular Research (LBI-LVR) is a non-profit research institute founded in July 2010 by the Ludwig Boltzmann Gesellschaft (LBG). LBG founded institutes conduct research in the fields of Medicine & Life Sciences or Humanities. The LBI-LVR was established after a demanding two-stage evaluation by international peers who strongly recommended the founding of the institute.

The LBI-LVR, like the other Ludwig Boltzmann Institutes, is established on a partnership between organizations and institutes that traditionally carry out research and organizations that traditionally apply research. The LBI-LVR Consortium currently comprises the Ludwig Boltzmann society as carrier institution in partnership with the Medical University of Graz (MUG) and Bayer AG. The Advisory Board of the LBI-LVR, composed of the representatives of each partner organization (LBG, MUG, and Bayer AG), supervises the progress of the LBI-LVR. The Scientific Advisory Board (SAB) of the LBI-LVR is an independent, world-wide recognized group of experts in pulmonary vascular biology and in pulmonary hypertension and monitors the scientific activities of the institute.

The LBI for Lung Vascular Research is predominantly located at the Center for Medical Research (ZMF) at the MUG, which supports the LBI with cutting-edge research facilities guaranteeing high-yield development in this field. The clinical research group is hosted next to the Center for Pulmonary Hypertension of the Division for Pulmonology / Department of Internal Medicine of the MUG.

For contact please visit our website: http://lvr.lbg.ac.at
1.1 What you should know about Lung Vascular Diseases: Facts, Diagnostics and Therapy

In recent years, the area of lung vascular diseases has emerged as a leading field of medical research. In particular, the diagnosis and therapy of pulmonary hypertension (PH) has made tremendous progress over the past 25 years. This has started with the first approval of a drug for idiopathic pulmonary arterial hypertension in 1995 and resulted in 14 approvals of different drugs and applications up to the year 2020. All these approvals were based on international pivotal trials providing evidence for efficacy and safety for targeted drugs for PAH or chronic thromboembolic pulmonary hypertension. However, PH remains a notoriously under-diagnosed chronic and fatal disease. Therefore, early recognition of the disease is still crucial. As the diagnosis of PH is performed by invasive right heart catheterisation, the development of reliable non-invasive methods to assess increased pulmonary arterial pressure values may represent a unique selling proposition. An additional urgent challenge is the development of PH in chronic heart and lung diseases: large patient populations with severe left heart disease or chronic obstructive lung disease may develop PH during the course of their disease, but currently no effective treatment options exist for these conditions. This represents an opportunity to develop novel concepts and therapeutic approaches.
Progressive loss of exercise capacity and worsening dyspnoea represent the most common symptoms of lung diseases, particularly if PH is involved. Clinical care for pulmonary vascular diseases is extremely costly; therefore, this condition poses a large burden on the Austrian as well as on the European healthcare system. Current therapies improve exercise capacity and may prolong survival of the affected individuals, but are far away from curing the disease or providing a substantially prolonged lifespan with a good quality of life. Future development must address these challenges in a multidisciplinary approach combining findings from basic research and clinical research.

1.2 Mission Statement/Aims of the Institute

The LBI for Lung Vascular Research has substantial expertise in the basic mechanisms of pulmonary vascular constriction and remodelling, combined with a broad and profound clinical background. We aim to provide a significant contribution to early recognition of pulmonary vascular diseases including pulmonary hypertension via novel and non-invasive methods and to develop innovative therapeutic strategies for an improved prognosis and better quality of life for the victims of this serious disease. The integrative, multidisciplinary and translational structure of the LBI-LVR allows it to uncover underlying molecular pathways, identify distinct targets for reverse-remodelling therapy, foster drug development based on these targets, and prove these new treatment options in preclinical and clinical proof-of-concept trials.

All our actions, both in research and implementation, will be based on mutual respect and esteem with regard to the patients, our partners, and our staff.

The main objectives of the LBI for Lung Vascular Research are:

- Exploring mechanisms of pulmonary vascular diseases enabling the identification of both novel therapeutic targets and new disease biomarkers that could enable specific diagnosis and therapy monitoring
- Developing new diagnostic tools for non-invasive screening for pulmonary vascular diseases
- Implementing the achieved results into preclinical as well as clinical pilot studies
- Increasing awareness for pulmonary vascular diseases in the society and for healthcare providers
1.3 Personal and Human Resources Development

1.3.1 Development of the LBI-LVR Staff

The LBI-LVR staff consists of the director, the program line leaders, senior and junior researchers (PhD students) and master students, technicians, study nurses and administrative assistants. Every PhD or postdoctoral fellow has an individual project and each group has scientific independence in generating their individual progress.

1.3.2 Graduations of the LBI-LVR Staff in 2020

In 2020, two of our colleagues had their graduation.

MARSH Leigh (Habilitation)
Habilitation in Physiology “The immunophysiology of chronic lung diseases; how the immune system alters lung physiology”, Key Researcher at LBI LVR

DOUSCHAN Philipp (Doctor of Medical science)
Dissertation topic: “Clinical relevance of mildly elevated pulmonary arterial pressure”, Division of Pulmonology, Medical University of Graz, Austria and Researcher at LBI LVR

1.3.3 MUG career steps

In 2020, three of our colleagues were taken over by the Medical University of Graz or had important career steps.

CRNKOVIC Slaven
Scientific professorship, Department of Physiology
Medical University of Graz, Austria and Researcher at LBI LVR

KOVACS Gabor
§99(5) professorship, Division of Pulmonology
Medical University of Graz, Austria and Key Researcher at LBI LVR

KWAPISZEWSKA Grazyna
§99(5) professorship, endowed professorship, Department of Physiology
Medical University of Graz, Austria, Director and Key Researcher at LBI LVR
1.3.4 Awards and prizes

<table>
<thead>
<tr>
<th>Name</th>
<th>Awards 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIRNHUBER Anna</td>
<td>René Baumgart Research Prize, Leipzig, Germany</td>
</tr>
<tr>
<td>SHARMA Neha</td>
<td>European Respiratory Society Clinical Training Fellowship, Giessen Germany, open due to Covid-19</td>
</tr>
<tr>
<td></td>
<td>European Respiratory Society Long-Term Research Fellowship, Budapest, Hungary / open due to Covid-19</td>
</tr>
</tbody>
</table>

1.3.5 Conferences and Meetings of the LBI-LVR Staff

Presentations at national and international conferences: Oral Communications

Sharma N. Neutrophil recruitment in the acute inflammatory phase of interstitial lung disease is determined by RGSS; ÖGP | OGTC annual meeting 2020, OCT 14-16, 2020, Vienna, Austria (virtual) (Nomination for poster prize and Oral Poster Presentation)

Presentations at national and international conferences: Posters

Biasin V, PDGFRα and αSMA mark two distinct mesenchymal cell populations involved in parenchymal and vascular remodeling in pulmonary fibrosis; ERS international congress, September 2020 (virtual).

Biasin V, Steroid hormones influence systemic sclerosis prevalence; eECE (European Congress of Endocrinology), September 2020 (virtual).

Birnhuber A, Pirfenidone exacerbates inflammatory influx to the lung in a mouse model of systemic sclerosis; ÖGP | OGTC annual meeting 2020, OCT 14-16, 2020, Vienna, Austria (virtual).

Jandl K, Basement membrane, a specialized extracellular matrix, shapes endothelial function in IPAH; ERS International Congress 2020, SEP 6-9, 2020 (virtual).

Mutgan A, Pentastatin, a matrinine of type IV collagen, as a potent regulator of endothelial dysfunction in pulmonary hypertension; MolMed Day, MedUniGraz, DEZ 04, 2020, Graz, Austria (virtual).
Nagy B, No indication of insulin resistance in idiopathic PAH with preserved physical activity; ERS International Congress 2020, SEP 6-9, 2020 (virtual)

Pienn, M., Fero, T., Kovacs, G., Olschewski, H., Biederer, J., Jobst B., COSYCONET study group: Lung vessel morphology changes with airway obstruction; ERS International Congress 2020, SEP 6-9, 2020 (virtual)

Schnögl D, Disturbed Innate Lymphoid Cell Function in a Mouse Model of Systemic Sclerosis; ÖGP | OGTC annual meeting, OCT 14-16, 2020, Vienna, Austria (virtual)

1.3.6 Patents of the LBI-LVR

<table>
<thead>
<tr>
<th>Patents</th>
<th>Inventors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomarker for the diagnosis of pulmonary hypertension (PH) Patent No. 16159415.5</td>
<td>H. Olschewski (LBI-LVR), A. Olschewski (LBI-LVR), C. Magnes (Joanneum Research), N. Bordag, S. Narath (CBmed GmbH), E. Gander (Joanneum Research) and B. Nagy (LBI-LVR)</td>
</tr>
<tr>
<td>Method and apparatus for processing impedance cardiograms for the assessment of the presence of pulmonary hypertension of a Patient and impedance cardiograph with such a device Patent No. 518396/2017</td>
<td>M. Pienn (LBI-LVR), H. Olschewski (LBI-LVR), G. Kovacs G., Z. Bálint (LBI-LVR)</td>
</tr>
<tr>
<td>Modulation of the calcium-activated chloride channel including TMEM16A represent a novel therapy for pulmonary hypertension (PH) Sold to Bayer AG</td>
<td>A. Olschewski (LBI-LVR), B. Nagy (LBI-LVR), C. Nagaraj (LBI-LVR), R. Papp (LBI-LVR)</td>
</tr>
</tbody>
</table>
1.4 Highlights 2020

1.4.1 Evaluation
The Ludwig Boltzmann Gesellschaft (LBG) invited an international team of experts in order to evaluate the Ludwig Boltzmann Institute for Lung Vascular Research on 9th and 10th of November 2020. This evaluation was a regular procedure within the statutes of the LBG. Independent external experts were invited to evaluate the results of the past period and to give recommendations for the future development.

The meetings of the review panel were chaired by Professor Lucie Clapp and were held online. The panel members submitted independent evaluations based on questions of the LBG before the meeting. During the online-evaluation, the panel had the opportunity to set its own priorities and to adapt the composition of the interviewed groups. The review panel declares that it had full access to the relevant information and was free to ask any questions. The LBG head office accompanied and supported the panel without any influence on the evaluation process or result.

Panel Members

- **Lucie Clapp**, Professor of Vascular Physiology, Deputy Director Institute of Cardiovascular Science, University College London, London, UK
 [Clapp, Lucie | FLARRE - UCL – University College London](#)
- **George Giannakoulas**, Associate Professor in Cardiology, Aristotle University of Thessaloniki, AHEPA Hospital, Cardiology Department, Thessaloniki, Greece
 [George Giannakoulas (escardio.org)](#)
- **Adam Torbicki**, Department of Pulmonary Hypertension, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, Otwock, Poland
 [Adam Torbicki - ECZ Otwock (ecz-otwock.pl)](#)
- **Christine Petry**, Programme Director, Deutsche Forschungsgemeinschaft, Bonn, Germany
 [DFG Head Office: Christine Petry](#)

Outcome

The evaluation was very positive for our Institute. We are pleased to present you the four main messages of the evaluation report:
• Overall, the panel was very pleased with the development of all three programme lines. The growth of the institute in terms of science as well as in terms of staff development is impressive. Important progress has been made since the last evaluation with regard to publications and patents as well as third party funding.

• The Ludwig Boltzmann Institute for Lung Vascular Research has established itself as an institution with a significant international profile. This international profile is in part related to the synergy between the three programme lines and the unique setup both in terms of experimental tools (clinical and basic science) and the ability to interrogate research questions “from bench to bedside”.

• This could be even further improved by a more critical evaluation of how results in animal models and patients will actually translate into better healthcare management or knowledge about mechanism of novel drug therapies. The LBI for Lung Vascular Research offers an excellent environment for young researchers.

• The panel was especially pleased to see that young researchers identify themselves with and want to work in the LBI: They see it as a strong functioning unit with a high research output, good training and career opportunities, and a general environment of openness and mutual respect, where they are allowed to flourish.
1.4.2 Awards

René Baumgart Research Prize 2020

Anna Birnhuber, PhD was awarded the René Baumgart Foundation Research Prize 2020 for her work "IL-1 receptor blockade shifts inflammation towards Th2 in a mouse model of systemic sclerosis".

Awards at the ÖGP Annual Conference 2020 for the LBI-LVR

Our PhD student Neha Sharma received the 2nd Poster Prize of the Austrian Society of Pneumology. She was awarded for her study on the RG55 molecule, which plays an important role in acute lung failure.

1.4.3 Fellowships

European Respiratory Society Long-Term Research Fellowship

Chandran Nagaraj was awarded with the European Respiratory Society Long-Term Research Fellowship, Budapest, Hungary.

European Respiratory Society Clinical Training Fellowship

Philipp Douschan was awarded with the European Respiratory Society Clinical Training Fellowship, Giessen Germany.

1.4.4 Grants

FWF Grant for Slaven Crnkovic

Slaven Crnkovic, PhD, has received the ERA CVD JTC Grant for his project "IMPHLeXIONS" in 2019. This is a FWF grant for Transnational Cardiovascular Research Projects driven by Early Career Scientists.

Start of the project: May 2020

IMPHLeXIONS: Inflammation and Metabolism in Pulmonary Hypertension are linked to skewed chromosome X inactivation

Pulmonary arterial hypertension is a rare, but progressive fatal disease of the pulmonary circulation affecting primarily females. The INPHLeXIONS project consortium will investigate the underlying
molecular mechanisms that lead to the observed gender bias in this disease. Research groups from Austria, Germany and Canada will apply newly developed technologies to characterize aberrant inactivation of X chromosome-linked genes involved in inflammatory and metabolic processes. Gained insights will be used to develop and validate novel therapeutic options for pulmonary arterial hypertension.

Project partners: Konda Babu Kurakula (Max-Planck-Institute for Heart and Lung Research, Germany) and Roxane Paulin (Universite Laval, Canada)

FWF KLIF grant for Leigh Marsh (KLI 844-B)

Leigh Marsh, has received a FWF KLIF grant (Programme Clinical Research) for his project "Inflammatory profiling in chronic lung disease"

Start of the project: January 2021

"**Inflammatory profiling in chronic lung disease**"

Inflammation plays an important role in mediating vascular remodeling in the idiopathic form of pulmonary hypertension (PH). In this context, the accumulation of inflammatory cells in and around the vessel wall correlates with the degree of vascular remodeling. However, very little is known about the role of inflammation in PH in the context of chronic lung disease. In this study, we will determine whether an underlying inflammatory cell profile exists in all forms of PH and how these cells regulate vascular remodeling processes.

FFG grant for Leigh Marsh

Leigh Marsh, was awarded with an FFG grant (Programme Industrial Dissertation) for the project "Involvement of the pulmonary vasculature in the development of pulmonary fibrosis"

Start of the project: July 2020

"**Involvement of the pulmonary vasculature in the development of pulmonary fibrosis**"

Pulmonary fibrosis is a central and serious problem in various diseases with pulmonary involvement. The pathogenesis of PF depends on the interaction of different pulmonary cell types, ultimately leading to destruction of lung architecture and respiratory deficits. Because the vascular compartment is severely affected, an important role of endothelial cells in disease pathogenesis is suggested. Therefore, we will systematically investigate the mechanisms of vascular maintenance and EC behavior during fibrosis initiation and progression.
1.4.5 Events

SAB Retreat Hotel Loisium, Ehrenhausen, Styria 2020

From September 17th to 18th, 2020, the annual retreat of the LBI LVR took place at the Hotel Loisium in Ehrenhausen, Styria, in compliance with the COVID 19 regulations prescribed by the authorities. Our young colleagues presented their current projects and results. Afterwards, stimulating discussions on the presented topics took place among the participants.

On a common hike along the wine trail, these discussions could be deepened even after the end of the seminar.

© LBI LVR
Annual meeting of the Austrian Society of Pneumology

The annual meeting of the Austrian Society of Pneumology was supposed to take place in Graz this year, but had to be held online due to the SARS CoV-2 pandemic. Nevertheless, pneumologists, respiratory physiotherapists, nurses, scientists and students with an interest in pneumology not only registered in large numbers, but actually actively participated between October 14 and 16 to contribute to each other. The more than 1000 participants made the success of the meeting in the new format possible.

One of the main topics - also in these lectures - was COVID-19, with experts from Germany and Austria presenting the current situation of the pandemic and the latest study results. In this regard, a position paper has already been published by the Austrian Society of Pneumology in Wiener Klinische Wochenschrift and serves as a guide for pulmonologists working in Austria.

On the first day, an interesting session on pulmonary hypertension and associated diseases took place. In addition, interstitial lung disease, eosinophilic asthma, and small cell lung carcinoma, among others, were discussed. At the end of the day, the classic "case of the year" session took place, with challenging patient cases brought by the Austrian lung centers. The second day of the congress had an intensive program, discussing topics such as rehabilitation, smoking and vaping, bronchoscopy, and pneumonia. Abstracts and oral poster presentations were also presented, as well as free papers from the Austrian Society of Thoracic Surgery. The last day of the congress was dedicated to interdisciplinarity with numerous updates on COPD, Cystic Fibrosis, Allergology and Pneumologic Oncology being presented.

During the meeting of the Pulmonary Circulation Working Group, Gabor Kovacs announced that he would be stepping down from the chairmanship of the Working Group next year due to his concurrent role as Vice President of the Society. Judith Löffler-Ragg from the University Hospital Innsbruck was elected as the new head of the working group. Philipp Douschan was elected as the new deputy head.
1.5 Public Relations

Update from CONNECT - European Researchers Night

The CONNECT project took part in the European Researchers Night on November 27, 2020 under the title:

„PatientInnen Involvierung in der Lungengefäßforschung“.

The project deals with the participation of different user groups in research on fibrosis, with a focus on pulmonary fibrosis. Fibrosis is characterized by a pathological proliferation of connective tissue, which leads to scarring. In addition, the different types of fibrosis are to be networked in this context. The involvement of the user groups takes place through co-creation workshops. According to the Open Innovation in Science process, patients, relatives, therapists and caregivers will be involved in this project to enable an optimal comprehensibility of the current research results.

The implementation of the presentation of such research results is done by special videos, in which the researchers present their current results in a simple way and in German language. The aim of the project is to disseminate comprehensible research results concerning fibrosis on a platform and thus to identify user groups that actively participate in research projects.

© LBI LVR
Virtual Patient Meeting on November 28th, 2020 - A Joint information day for patients with pulmonary fibrosis and / or pulmonary hypertension and relatives

On November 28th, 2020, the virtual patient meeting was held. The topic was the COVID-19 pandemic and its impact on patients with pulmonary hypertension. During the information day, Horst Olschewski gave a lecture in which he presented the most important facts about the virus and the disease. He also presented the case of a patient who was treated at our clinic. Although he had suffered severe complications, he was finally able to leave the hospital healthy. At the end of the lecture, practical questions that concern our patients the most were discussed together.

You can find the recording of the virtual info day in Graz with our colleagues Horst Olschewski and Gabor Kovacs, Eva Otter and Monika Tschida, (both PH Austria) here:

PH Austria Infotag Graz am 28.11.2020 - YouTube

© Paulina Nowak /dp.at
Newsletter

In addition, the Newsletter of the Pulmo-Outpatient Clinic of the Hospital Graz and the Ludwig Boltzmann Institute for Lung Vascular Research for patients with pulmonary hypertension or a high risk for this disease is available via email by Daniela Kleinschek: daniela.kleinschek@lvr.lbg.ac.at or online at the LBI LVR Homepage.

Press Appearances

The LBI for Lung Vascular Research has received several invitations to present their research work and aims to the broad public. A short overview of the press appearances in 2020 is given here:

- „PhD Positions in biomedical research at the Medical University of Graz“ – career.duth.gr, 11.02.2020
- „Forschungspreis 2020 der René Baumgart-Stiftung“ – klamm.de/gesundheitsjournal24.de/lifepr.de/it-it-prof.de/immittelstand.de/mynewschannel.net, 08.10.2020
In 2020, several crucial studies from our group contributed to the understanding of mechanisms underlying vascular remodeling in the diverse forms of pulmonary hypertension. Our studies could potentially help shape the directions where new therapeutic options could be developed.

Endothelial Dysfunction Following Enhanced TMEM16A Activity in Human Pulmonary Arteries

Endothelial cells form a barrier, effectively separating the luminal from the abluminal side of the vessels and responding to a variety of cues coming from continuous intercellular communication, both locally and systemically. They also function as an endocrine organ, releasing a diverse array of compounds affecting vasoactive, immune, growth and coagulation processes. This makes the endothelium a perfectly positioned critical source of mediators promoting vascular remodeling. Endothelial dysfunction is one of the key players in the development of pulmonary arterial hypertension (PAH), a
multifactorial disorder characterized by a progressive rise in vascular resistance. Ion channels dysfunction in PAH has been traditionally structured around the effect of K+ and Ca2+ channel alterations on the phenotype of pulmonary arterial smooth muscle cells (PASMCs). The focus has recently been extended towards Ca2+-activated Cl− channels, demonstrating their importance in cell physiology and we have just reported the contribution of the Cl− channel TMEM16A in the maintenance of PASMC membrane potential for the first time. In contrast, our knowledge about aberrations in ion channel function in endothelial cells of pulmonary arteries (PAECs) is limited.

In our recent study, we show the pathological consequences of increased TMEM16A activity in primary human PAECs and introduce TMEM16A as a player responsible for pathological changes in idiopathic form of PAH PAECs (Skofic Maurer et al., Cells. 2020 doi: 10.3390/cells9091984).

First, we verified the presence of TMEM16A in von Willebrand Factor positive (vWF+) cells from healthy donors and IPAH patients employing immunofluorescence staining in 3D precision-cut lung slices (PCLS), as well as lung sections and PAECs (Figure 1). We next sought to verify Ca2+-activated Cl− current in IPAH PAECs employing state-of-the art electrophysiology of the cells, the whole-cell patch-clamp recordings. Our results showed significantly increased TMEM16A-sensitive current in IPAH PAECs in comparison to donor PAECs.

Figure 1: TMEM16A accounts for increased Ca2+-activated Cl− current in IPAH PAECs. Immunofluorescence staining of (a) 3D precision cut lung slices (PCLS), (b) lung sections and (c) PAECs obtained from healthy donor lungs and patients suffering from IPAH. (d) The effect of TMEM16A inhibitor Bbr on representative whole-cell ICi Ca traces (left) and normalized current-voltage relationships (right) measured with voltage clamp in donor and IPAH PAECs (e) Comparison of the Ca2+-activated Cl− current density of donor and IPAH PAECs. (Source: Skofic Maurer et al., Cells 2020 https://doi.org/10.3390/cells9091984)
One of the fundamental capabilities of endothelial cells is formation into more organized structures. Since enhanced activity of TMEM16A reduced proliferation with cells favoring oxidative, instead of angiogenesis-supporting glycolytic metabolism, we looked further into their angiogenic potential. We found that healthy primary human PAECs form a network of tubular structures whereas TMEM16A-overexpressing PAECs showed reduced spreading potential and tube-formation capabilities, indicating that these cells have a deficiency in new vessel formation.

Figure 2: Increased TMEM16A activity causes angiogenic dysfunction. (a) Representative pictures of PAECs wound healing assay, overexpressing TMEM16A using an artificial adenovirus-system (AnoAd1). (b) Quantification of the wound healing assay. (c) Matrigel tube-formation assay with representative bright-field (BF) and fluorescence pictures of Ano1Ad or control PAECs (CtrlAd). (d) Quantification showing the number of branching points in comparison to CtrlAd. (Source: Skofic Maurer et al., Cells 2020 https://doi.org/10.3390/cells9091984)

Within the scope of our work we were able to extend the pathological footprint of TMEM16A beyond its effect on smooth muscle cell physiology and show its role in the fundamental disruption of downstream signalling pathways otherwise essential to the identity of an endothelial cell. Increased Ca2+ levels of PAECs showed increased proliferation, angiogenesis and nitric oxide production and increased TMEM16A activity weakened the Ca2+ responsiveness of these processes. We traced these detrimental effects at pathways essentially interconnected with all the crucial endothelial-defining processes. As a result, we have established that disease-associated TMEM16A activity pathologically primes healthy pulmonary arteries and ultimately causes severe deficiencies resembling of that found in PAH.
PDGFRα and αSMA mark two distinct mesenchymal cell populations involved in parenchymal and vascular remodeling in pulmonary fibrosis

Lung fibrosis is a severe disease characterized by epithelial cell injury, inflammation and extracellular matrix (ECM) accumulation leading to progressive remodeling and stiffening of the lung which ultimately induce lung functional impairment and death. Remodeling in both the parenchymal and vascular compartments is characterized by aberrant fibroblasts cellular proliferation and enhanced collagen deposition. To date, expansion of α-smooth muscle actin (αSMA)-expressing cells, termed myofibroblasts, is thought to be the major pathomechanism responsible for vascular and parenchymal remodeling. However, recent studies have showed that αSMA positive cells are not the only and main source of collagen production. In our recent study we could show that two different populations of fibroblasts contribute to lung fibrosis: the αSMA-expressing cells and the PDGFRα-expressing cells (Figure 1A). Importantly, analysis of an independent scRNA-Seq data set (GSE122960) analyzing human IPF and donor lungs revealed that (αSMA)-expressing cells and the PDGFRα-expressing cells delineate two distinct sub-clusters of fibroblasts with minimal overlap (Figure 1B).

To trace lineage hierarchy and possible transdifferentiation between αSMA- and PDGFRα-expressing cells we used a binary fate mapping approach in two different lung fibrosis mouse model. Similar to the human data, we observed that double positive αSMA- and PDGFRα-expressing cells were only a minimal percentage of cells, again corroborating that these two population are independent and separate.
To corroborate whether myofibroblasts are really the major contributor to collagen production, we assessed the capability of producing collagen in both αSMA-expressing cells and the PDGFRα-expressing cells. In both human lungs and in mouse model of lung fibrosis, both populations of fibroblasts were responsible for collagen production, suggesting that αSMA-expressing cells are not the only cell type causing lung fibrosis (Figure 3A and 3B).

A key conclusion from the present study is that the biology not only of αSMA+ cells, but also that of PDGFRα+ cells should be incorporated into studies focusing on lung fibrosis and on drug development.
The basement membrane – a specialized extracellular matrix – shape endothelial cell function in pulmonary arterial hypertension

Pulmonary arterial hypertension is a severe disease of the pulmonary vasculature, in which progressive remodelling leads to thickening of the pulmonary arterial wall, vessel lumen obstruction. Clinically this leads to increased pulmonary arterial pressure, and a burden on the right heart. Although patients ultimately die of right heart failure, PAH is a disease of the vasculature in the lung due to vessel remodelling. In PAH, vessel remodelling is observed both on cellular level (dysfunctional cellular behavior) and on the extracellular level (increased deposition of extracellular matrix proteins). In this study, we aimed to connect both abnormalities and investigated how the basement membrane, a specialized subset of extracellular matrix proteins, is changed in PAH and how this affects endothelial cell behavior.

First, we aimed to see whether we could observe structural differences in the BM composition in PAH vessel. Using electron microscopy, we detected several ultrastructural changes in the BM ranging from thickening, pronounced deposition of partially degraded BM-like material underlying the intact BM layer, and occasional multiple-layered BM sections (see Figure 1A). Next, we performed a transcriptomic analysis of BM components to see whether changes in gene expression underlay the ultrastructural alterations. For this we used isolated larger and smaller arteries (via laser capture microdissection), and identified that generally, IPAH skewed BM genes toward increased expression. Interestingly, expression changes were dependent on the vessel size. In smaller vessels, mostly BM collagens, such as type IV collagen (COL4A5), and in larger vessels, mostly BM glycoproteins, such as laminin (LAMC1), were increased in PAH (Figure 1B).

We next tested whether different BM components such as laminins or type IV collagens would affect endothelial cell function differently. For this, we seeded human pulmonary arterial endothelial cells (hPAECs) on type IV collagen or laminin and investigated its barrier properties by real-time measurements of endothelial cell resistance (using the electrical cell substrate impedance sensing method) or via visualization of junctional proteins Ve-Cadherin and the localization of mechanosensitive protein YAP. Interestingly, culture of hPAEC on laminin or type IV collagen increased the maximum endothelial cell resistance compared to coating on gelatine, suggesting a tighter endothelial barrier. This was observed for hPAECs from donor and IPAH patients (Figure 1C). The transcriptional coactivator of the hippo pathway YAP is often engaged in ECM signaling and mechanosensing and connected to the formation of tight junctions and VE-Cadherin turnover. Interestingly, culture on type IV collagen, but not laminin, induced YAP nuclear translocation in both donor and IPAH hPAECs. Culture on laminin
however, lead to cytoplasmic retention of YAP, which was visible only in IPAH hPAECs, as they already started with a bigger fraction of nuclear YAP then donor hPAECs (Figure 1D).

Taken together our results suggest that the basement membrane undergoes structural and compositional changes, which ultimately affect the function of endothelial cells. Furthermore, its functional effects can also be determined by inherent differences of endothelial cells determined by disease status. This study was published in the American Journal of Respiratory Cell Molecular Biology. (Jandl et al. Am J Respir Cell Mol Biol. 2020 Jul;63(1):104-117)

Figure 1: A) Electron-micrograph of pulmonary arteries of Donor and IPAH patients; scale bar: 500 nm. B) ΔCT values of significantly regulated genes in small and large PAs according to extracellular matrix (ECM) class and subclass analyzed. *P<0.05 as determined by two-way ANOVA with interaction and Tukey’s multiple comparison test. #P<0.05 as determined by comparison of donor versus IPAH by nonparametric Wilcoxon-Mann-Whitney test. C) Representative ECIS recordings of donor, and IPAH hPAECs. D) Representative immunofluorescence pictures of hPAEC from donor and IPAH coated on the respective matrix.
Scientific Cooperations

ALLANORE Yannick M.D., Cochin Hospital, Paris, France
BELLUSCI Saverio, PhD., Justus Liebig University, Giessen, Germany
EFERL Robert Dr., Medical University of Vienna, Austria
HASSOUN Paul M., M.D., Johns Hopkins University, Baltimore, Maryland
HEINEMANN Akos Prof., Medical University of Graz, Austria
HOEFLER Gerald Prof., Medical University of Graz, Austria
KLEPETKO Walter Prof., Medical University of Vienna, Austria
KUEBLER Wolfgang Prof., St. Michael’s Hospital, Toronto, Canada
MORRISEY Ed Prof., University of Pennsylvania, Philadelphia, USA
PEREZ Vinicio de Jesus, M.D., Stanford University, Stanford, California
WEIR E. Kenneth Prof., University of Minneapolis, Minnesota, US
WEISSMANN Norbert Prof., ECCPS, University Giessen Lung Centre, Giessen, Germany
WILHELM Jochen Dr., University Giessen Lung Centre, Giessen, Germany
WITZENRATH Martin Prof., Charité –University Medical Department, Berlin, Germany
WYGRECKA Malgorzata Prof., University Giessen Lung Centre, Giessen, Germany
2.2 Translational Platform of the LBI-LVR

Two thousand and twenty continued the upward trend for the Translational Platform, we not only again expanded our team, gained extramural funding, but also published several collaborative and group-lead manuscripts.

Two successful grant applications were among the highlights for the Translational Platform. The first from the Austrian Research Promotion Agency (FFG) industrial dissertation programme, allows us to further our investigations into how the pulmonary vasculature contributes to the development of the severe and deadly disease, pulmonary fibrosis.

From our successful Austrian Science Fund Clinical Research programme (FWF-KLIF) grant application, we were able to expand our staff. The person will support our post-doctoral scientist, Natalie Bordag in determining how inflammatory cells contribute to chronic lung diseases such as pulmonary fibrosis and chronic obstructive lung disease.

We also welcomed Mathias Hochgerner to our group. Mathias joined straight from his PhD at the Institute of Cancer Research in Vienna. His background in cancer immunology further enhances our competence in immunology, specifically immune/stroma-interactions. Based on his input, we have modified our standing protocols for lung processing to include isolation and banking of immune cells both from blood and lung tissue of patients for use in future projects.

To further strengthen scientific exchange, our PhD Student Diana Schnögl, spent two day at Veronika Sexl/Dagmar Gotthardt’s research group at the Institute of Pharmacology and Toxicology at University of Veterinary Medicine of Vienna, to learn natural killer cell isolation, cultivation and functional assays and to establish these methods in our laboratory. Data obtained from these techniques was incorporated into two online conference presentations at the doctoral day at the medical university of
Graz and the annual meeting of the Austrian society of pulmonology and at the doctoral day at the Medical University of Graz.

Machine Learning Analysis of the Bleomycin Mouse Model Reveals the Compartmental and Temporal Inflammatory Pulmonary Fingerprint

Idiopathic pulmonary fibrosis (IPF) is a severe, rapidly progressing interstitial lung disease with high mortality rates and short median survival times. We were able to answer fundamental questions about inflammatory kinetics and model robustness by applying recently established as well as newly added machine learning methods. These techniques allowed us to combine existing pre-clinical data from more than a dozen different experiments to conclusively show that pulmonary inflammation is observed at all stages of bleomycin-induced fibrosis. Yet individual populations display distinct kinetics. Cells from the innate immune system characterized the initial inflammatory response, while cells from the adaptive immune system increased over time and strongly associated with advanced pulmonary remodelling. Our data serves as a reference point for future studies investigating the specific role of individual inflammatory populations in pulmonary fibrosis. This study was published in iScience, by Bordag et al. with the tile “Machine Learning Analysis of the Bleomycin Mouse Model Reveals the Compartmental and Temporal Inflammatory Pulmonary Fingerprint”. This data was also presented at the 2020 International Conference of the American-Thoracic-Society.

In 2019, the Food and Drug Administration (FDA) released a warning that CDK4/6 inhibitors used to treat patients with advanced breast cancers may cause rare but severe pulmonary inflammation. In our 2020 publication “CDK4/6 inhibition enhances pulmonary inflammatory infiltration in bleomycin-induced lung fibrosis”, we provided experimental evidence for this warning. In a pre-clinical model of pulmonary
fibrosis, CDK4/6 inhibition provided some benefit in reducing collagen deposition (the main cause for scar formation in fibrotic lungs), but also augmented inflammatory cell recruitment into the alveolar compartment. Our data emphasizes the risk of severe inflammatory adverse effects in the lung, especially in patients with known pulmonary risk factors and highlights the necessity to carefully monitor all patients treated with CDK4/6 inhibitors for signs of lung inflammation. This data was published in Respiratory Research by Birnhuber et al. Furthermore, our group contributed expertise to both internal and external collaborators, resulting in three collaborative peer reviewed manuscripts and one preprint.

![Figure 2: Overview of our Respiratory Research paper](https://doi.org/10.1186/s12931-020-01433-w)

Scientific Cooperations

GARN, Holger Prof, Philipps University of Marburg, Marburg, Germany
GOTTHARDT Dagmar Dr, University of Veterinary Medicine, Vienna, Austria
GRILLARI Johannes Prof, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology
GRUNIG Gabriele Dr, New York University School of Medicine, New York, USA
HEINEMANN Akos Prof, Otto Loewi Research Centre, Medical University of Graz, Austria
OGRODNIK, Mikolaj Dr, Ludwig Boltzmann Research Group SHoW - Senescence and Healing of Wounds, Vienna, Austria
STROBL Herbert Prof, Otto Loewi Research Centre, Medical University of Graz, Austria
2.3 Clinical Studies

The main aim of the clinical arm of the LBI is to promote the early diagnosis of chronic pulmonary vascular diseases. In recent years, we increasingly focused on two clinical research areas: pulmonary hemodynamics during exercise and pulmonary vascular disease in patients with chronic lung diseases. Of course, we aimed to work on these questions in a comprehensive manner and by building on previous results of the Institute.

Pulmonary hemodynamics during exercise

In a European Respiratory Society (ERS) Task Force we recently developed an expert statement on pulmonary haemodynamics during exercise and identified the most important actual research questions. In accordance with this, we aim to investigate the prognostic relevance of pulmonary haemodynamics during exercise by using a multi-center approach and to identify independent predictors of adverse events. In order to achieve this goal, we established an ERS supported Clinical Research Collaboration led by our Institute and a central web based database. We expect that this study may even provide a basis for the planning of therapeutic trials in exercise PH. By now, 40 expert centres from 15 countries have joined this Clinical Research Collaboration and over 1300 patients have already been included into the database. An editorial was published summarizing the main goals of the project (Kovacs et al. ERJ 2019). Based on the achievements of the first three years, the ERS prolonged its
support for PEX-NET until 2024. In 2020, the retrospective part of the database was closed and the first comprehensive analyses is currently being performed.

In addition to this international effort, we aimed to analyse specific questions on the prognostic relevance of exercise haemodynamics based on data from our own patients undergoing comprehensive clinical characterization. We found that pulmonary vascular resistance (PVR) at maximal exercise were significantly associated with age-adjusted long-term mortality in patients with systemic sclerosis and may provide additional prognostic information as compared to resting pulmonary haemodynamics (Zeder et al. Chest 2020).

Pulmonary vascular phenotype in patients with chronic lung diseases

The goal of our projects was to identify criteria and provide characteristics for a “pulmonary vascular phenotype” in chronic lung diseases. In order to investigate these questions, we identified n=142 COPD patients undergoing right heart catheterization (52% of the patients showing severe PH) and complete clinical work-up (including imaging data and blood samples in our biobank) with available follow-up and mortality data (median follow-up time 6 years) in our centre. In addition, there are n=80 explanted lung samples and corresponding blood samples in our tissue bank available from COPD patients undergoing lung transplantation. These patient data and materials form the basis of the continuously developing GRAPHIC registry (Graz Pulmonary Hypertension in COPD). The first analyses of this registry revealed that PVR > 5 WU is the strongest independent hemodynamic predictor of mortality in patients with COPD. A PVR > 5 WU suggests the presence of severe pulmonary vascular disease and this was associated with less severe airflow obstruction and a relatively low pulmonary venous pressure, which is consistent with a pulmonary vascular phenotype of COPD.
Scientific Cooperations

AVIAN Alexander, Mag. Medical University of Graz, Austria
BERGHOLD Andrea, Prof. Medical University of Graz, Austria
BRODMANN Marianne, Prof. Medical University of Graz, Austria
CONDLIFFE Robin, Prof. Sheffield University, England
GRANINGER Winfried, Prof. Medical University of Graz, Austria
D’ALTO Michele, Prof. University of Campania, Neaples, Italy
DUMITRESCU Daniel, Dr. University of Cologne, Germany
FUCHSJÄGER Michael, Prof. Medical University of Graz, Austria
HAFNER Franz, Prof. Medical University of Graz, Austria
HERMANN Josef, Prov.Doc. Medical University of Graz, Austria
HORWATH-WINTER Jutta, Priv.Doc. Medical University of Graz, Austria
JACOB Joseph, Dr. Royal Brompton Hospital, United Kingdom
JOBST Bertram, Dr. Heidelberg University Hospital, Germany
LANGE Tobias Dr. University Clinic Regensburg, Germany
LAWRIE Allan, Prof. Sheffield University, England
MAIER Robert, Prof Medical University of Graz, Austria
MARON Bradley, Prof. Harvard Medical School, Boston, USA
MOAZEDI-Fürst Florentine, Dr. Medical University Graz, Austria
MORRELL Nicholas, Prof. Cambridge University, Great Britain
MÜLLER Veronika, Prof. Semmelweis University Budapest, Hungary
NAEJE Robert, Prof. Free University of Brussels, Belgium
OCCIPINTI Mariaelena, Dr. University of Florence, Italy
ODLER Balazs, Dr. Medical University of Graz, Austria
RAGGAM Reinhard, Dr. Medical University of Graz, Austria
REITER Ursula, Dr. Medical University of Graz, Austria
SCHLENKE Peter Prof. Medical University of Graz, Austria
STAUBER Rudolf, Prof. Medical University of Graz, Austria
STOLLBERGER Rudolf, Prof. University of Technology Graz, Austria
TORNYOS Adrienn, Dr. Medical University of Graz, Austria
ULRICH Silvia, Prof. University of Zurich, Switzerland
URSCHLER Martin, Dr. LBI for Clinic Forensic Imaging, Austria
2.4 Publications of the LBI-LVR 2020

The cumulative impact factor, an indicator for the quality of our scientific publications with LBI-LVR affiliation, reached the remarkable value of 1635 by the end of the year 2020.

2.4.1 Top five publications 2020 (in alphabetical order)

(*young scientists of the LBI LVR are underlined)

2.4.1 Scientific publications 2020

(*young scientists of the LBI LVR are underlined)

3 LBI Inside

For this year’s annual report, we would like to give you an insight into the work areas of our management team. In particular, we would like to introduce you to the LBI-LVR Office Team with its different tasks.

3.1 Inside LBI-LVR: Claudia Jakob-Pelikan

I started working at the Institute in December 2012. I am responsible for general secretarial tasks at the institute, with many different things to do every day, such as making appointments, personnel matters, forwarding contracts of employment, interface with the LBG personnel office, organising e-mail addresses, general mail handling. I see myself as a contact point for all kinds of issues.

Another important part of my job is ordering requirements for the laboratory, communication with pharmacy on site of the Klinikum Kages as well as with distributors of laboratory supplies.

In addition, I am responsible for the travel management of the LBI team and of our guests, including hotel bookings, flights and taxi bookings.

3.2 Inside LBI-LVR: Sarah Bundschuh

Since February 2020, I have been employed as project manager for the CONNECT project. CONNECT is a cooperation between the Copenhagen Business School (Marion Poetz), Med Uni Graz (Selma Mautner) and the Ludwig Boltzmann Institute for Lung Vascular Research and I as project manager and Valentina Biasin as a scientific coordinator are involved in its implementation. The aim of CONNECT is to identify and involve those users (e.g. patients) who want to share their knowledge and participate in research. In addition, CONNECT aims to establish a new process where interested users are equally involved in an open research process. The project also contributes to narrowing the gap between science and society. In order to address a broad spectrum of users, we have chosen fibrosis as a topic. I really enjoy working with everyone involved in the dissemination of the project and we are well on our way to creating a very interesting open research platform.
In February 2019, I joined the LBI-LVR and started my work in the field of research management. My main area of responsibility is to support the institute’s management in all submissions of project proposals, e.g. to the EU, FWF and FFG. Subsequently, my work also includes project coordination and accounting for approved, ongoing projects of the institute.

Another part of my work is the maintenance of public relations. Here, my tasks include maintaining the homepage, sending out press releases and preparing the annual report.

In addition, I support the office team in organizational matters, especially in the planning and execution of the annual retreat, the SAB meetings and the preparation of the biannual board meetings.

Another large part of my work area is the responsibility for the entire sample collection of the Biobank in particular the maintenance of the associated data. I manage the distribution of biological material for all Institute staff. Furthermore, I am the responsible contact person for the cooperation and coordination with the transplantation team of the Medical University of Vienna.

What I appreciate most about my work at the LBI LVR is the opportunity to gain experience in the field of research in a motivated international team. On the one hand, I gain insights in the coordinative and administrative area (project coordination and submissions) and on the other hand into the scientific area of research (biobank). This mixture of science and administration makes my job so interesting and I feel I am making an important contribution to our research.
4 Teaching and Training Activities of the Institute

4.1 Training in the LBI for Lung Vascular Research

4.1.1 Training of the LBI-LVR Staff

Following advanced trainings were visited in 2020:

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Title of the Lecture/ Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIRNHUBER Anna</td>
<td>Medical University of Graz, Austria</td>
<td>Project Management (Rainer Svacinka)</td>
</tr>
<tr>
<td>BIRNHUBER Anna</td>
<td>LBG Career Center, Vienna, Austria</td>
<td>Career Chat</td>
</tr>
<tr>
<td>BIASIN Valentina</td>
<td>Medical University of Graz, Austria</td>
<td>Basic Module Teaching: Testing - did the knowledge transfer take place appropriately? - Overview of examination formats</td>
</tr>
<tr>
<td>BIASIN Valentina</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 2 (Katherine Tiede)</td>
</tr>
<tr>
<td>BONYADIRAD Ehsan</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 1 (Katherine Tiede)</td>
</tr>
<tr>
<td>BONHEUR Savinien</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 1 (Katherine Tiede)</td>
</tr>
<tr>
<td>BORDAG Natalie</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 1 (Katherine Tiede)</td>
</tr>
<tr>
<td>BORDAG Natalie</td>
<td>Medical University of Graz, Austria</td>
<td>Basismodul Lehre: Urheberrecht und Datenschutz</td>
</tr>
<tr>
<td>BORDAG Natalie</td>
<td>Medical University of Graz, Austria</td>
<td>Basismodul Lehre: Prüfen - erfolgte der Wissentransfer zweckmäßig? (1) - Überblick Prüfungsformate</td>
</tr>
<tr>
<td>BORDAG Natalie</td>
<td>Medical University of Graz, Austria</td>
<td>Betreuung von Abschlussarbeiten – von der Idee zur Realisierung</td>
</tr>
<tr>
<td>BORDAG Natalie</td>
<td>Medical University of Graz, Austria</td>
<td>Beurteilung von Abschlussarbeiten</td>
</tr>
<tr>
<td>BORDAG Natalie</td>
<td>Medical University of Graz, Austria</td>
<td>Basismodul Lehre: OSCE 1 + 2</td>
</tr>
<tr>
<td>BORDAG Natalie</td>
<td>Medical University of Graz, Austria</td>
<td>Evaluierung - Wir wollen besser werden</td>
</tr>
<tr>
<td>BORDAG Natalie</td>
<td>Medical University of Graz, Austria</td>
<td>Hochschuldidaktik – Lehr- und Lernmethoden</td>
</tr>
<tr>
<td>BORDAG Natalie</td>
<td>Medical University of Graz, Austria</td>
<td>Patientinnen und Patienten stehen im Mittelpunkt der Lehre</td>
</tr>
<tr>
<td>BORDAG Natalie</td>
<td>Medical University of Graz, Austria</td>
<td>Pipettieren und Lehre im Labor</td>
</tr>
<tr>
<td>BORDAG Natalie</td>
<td>Medical University of Graz, Austria</td>
<td>Einführung in die Hochschuldidaktik</td>
</tr>
<tr>
<td>BRCIC Luca</td>
<td>Medical University of Graz, Austria</td>
<td>ICH Good Clinical Practice E6 (R2) training course</td>
</tr>
<tr>
<td>BRCIC Luca</td>
<td>Medical University of Graz, Austria</td>
<td>Aufbaumodul Forschung: Statistik 1</td>
</tr>
<tr>
<td>CRNKOVIC Slaven</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 2 (Katherine Tiede)</td>
</tr>
<tr>
<td>FLIESER Elisabeth</td>
<td>BMF Graz, Austria</td>
<td>BMF Graz FELASA B Kurs</td>
</tr>
</tbody>
</table>

38
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Course/Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIESER Elisabeth</td>
<td>Medical University of Graz, Austria</td>
<td>Einführung in die Hochschuldidaktik</td>
</tr>
<tr>
<td>FORIS Vasile</td>
<td>Medical University of Graz, Austria</td>
<td>Master of Science Biobanking (2018-2020), master program</td>
</tr>
<tr>
<td>FUCHS Thomas</td>
<td>Medical University of Graz / TecTrain, Austria</td>
<td>MS Excel Basics / Refresher</td>
</tr>
<tr>
<td>HALSEGGER Sabine</td>
<td>Medical University of Graz / TecTrain, Austria</td>
<td>MS Excel Basics / Refresher</td>
</tr>
<tr>
<td>HOCHGERNER Mathias</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 1 (Katherine Tiede)</td>
</tr>
<tr>
<td>JANDL Katharina</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 2 (Katherine Tiede)</td>
</tr>
<tr>
<td>MARSH Leigh</td>
<td>Medical University of Graz, Austria</td>
<td>Supervision of Doctoral and PhD Candidates</td>
</tr>
<tr>
<td>MARSH Leigh</td>
<td>Medical University of Graz, Austria</td>
<td>Data protection instruction and IT security</td>
</tr>
<tr>
<td>MUTGAN Ayse Ceren</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 1 (Katherine Tiede)</td>
</tr>
<tr>
<td>MUTGAN Ayse Ceren</td>
<td>Medical University of Graz, Austria</td>
<td>Scientific Writing (Eva Müller)</td>
</tr>
<tr>
<td>NAGARAJ Chandran</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 2 (Katherine Tiede)</td>
</tr>
<tr>
<td>NAGY Bence</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 2 (Katherine Tiede)</td>
</tr>
<tr>
<td>PIENN Michael</td>
<td>University of Köln, Germany</td>
<td>Update RSNA – Fortbildung in radiologischer Diagnostik</td>
</tr>
<tr>
<td>SASSMANN Teresa</td>
<td>Medical University of Graz, Austria</td>
<td>Dissertationsseminar - Diabetes Technology (DS Sustainable Health Research)</td>
</tr>
<tr>
<td>SASSMANN Teresa</td>
<td>Medical University of Graz, Austria</td>
<td>Dissertationsseminar - Molecular Mechanisms in Autoimmunity (PhD Molecular Medicine)</td>
</tr>
<tr>
<td>SASSMANN Teresa</td>
<td>Medical University of Graz, Austria</td>
<td>Dissertationsseminar - Role of Eosionophils in Obstructive Airway Disease (PhD Molecular Medicine)</td>
</tr>
<tr>
<td>SASSMANN Teresa</td>
<td>Medical University of Graz, Austria</td>
<td>Literaturclubs, Projektpräsentationen und Gastvorträge, Cardiovascular JC (TMCB)</td>
</tr>
<tr>
<td>SHARMA Neha</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 1 (Katherine Tiede)</td>
</tr>
<tr>
<td>SCHNÖGL Diana</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 1 (Katherine Tiede)</td>
</tr>
<tr>
<td>VALZANO Francesco</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 1 (Katherine Tiede)</td>
</tr>
<tr>
<td>ZABINI Diana</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 2 (Katherine Tiede)</td>
</tr>
<tr>
<td>ZABINI Diana</td>
<td>Medical University of Graz, Austria</td>
<td>Basismodul Lehre: Pipettieren, Messen, Protokollieren - Lehre im Labor</td>
</tr>
<tr>
<td>ZABINI Diana</td>
<td>Medical University of Graz, Austria</td>
<td>Aufbaumodul Lehre: Der VMC</td>
</tr>
<tr>
<td>ZEDER Katarina</td>
<td>LBI Lung Vascular Research, Austria</td>
<td>Scientific writing 1 (Katherine Tiede)</td>
</tr>
</tbody>
</table>
Invited Speakers 2020

<table>
<thead>
<tr>
<th>LAMBRECHT Bernd, PhD</th>
<th>Johannes Kepler University, Kepler University Hospital, Linz, Austria</th>
<th>07 JAN 20</th>
<th>Various aspects of COPD Epidemiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHODES J Christopher, PhD</td>
<td>Faculty of Medicine, National Heart & Lung Institute, Imperial College London, Great Britain</td>
<td>14 JAN 20</td>
<td>Application of metabolomics and proteomics to identify Unique Clinical Phenotypes in PAH</td>
</tr>
<tr>
<td>MITTERHAUSER Markus, MD</td>
<td>Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria</td>
<td>18 JAN 20</td>
<td>Applied Diagnostics: you see what you treat, you treat what you see?</td>
</tr>
<tr>
<td>SIBILIA Maria, PhD</td>
<td>Institute for Cancer Research, Department of Medicine, Medical University of Vienna, Austria</td>
<td>09 JUN 20</td>
<td>Microenvironmental Drivers of Inflammation and Tumorigenesis</td>
</tr>
<tr>
<td>REDL Heinz, MD</td>
<td>Ludwig Boltzmann Institute Experimental and Clinical Traumatology, Vienna, Austria</td>
<td>20 JUL 20</td>
<td>Diagnostic based acute- and regenerative therapy approaches in LBI Trauma/Austrian Cluster for Tissue Regeneration</td>
</tr>
<tr>
<td>GOTTHARDT Dagmar, PhD</td>
<td>Institute for Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria</td>
<td>16 SEP 20</td>
<td>Natural Killer cells and their role in the surveillance and immune evasion of cancer</td>
</tr>
</tbody>
</table>